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Introduction

Although mathematics standards have 

changed dramatically in recent years, 

teaching mathematics is as complex as it 

has always been. Some would argue that 

mathematics teaching has become even 

more complex, with the implementation 

of the Common Core State Standards for 

Mathematics (CCSS-M) (NGA Center & 

CCSSO, 2010), as teachers are being asked to 

make significant shifts in their instruction.1

Teachers report that they are incorporating 

math standards into their daily practice and 

are feeling positive about their efforts to 

do so (Reade, Perry, & Heredia, 2018; Perry, 

Marple, & Reade, 2017), but the education 

field still has little empirical documentation 

on exactly how math teachers are shifting 

their classroom instruction to align with the 

CCSS-M. Exactly what are math teachers 

doing in their classrooms to help students 

master the standards?

Part of the reason for the lack of data is the 

challenge of accurately measuring what 

happens during classroom instruction. The 

only real way to know what is happening in 

classrooms is through direct observation, 

and while it may be possible to get the gist 

of math classes through quick “drop-in” 

observations, it is ideal, for a systemic 

understanding of change, to use a valid 

and reliable observation instrument tied to 

specific elements of instruction. This sort 

of targeted instrument enables observers to 

obtain meaningful data and identify pat-

terns in instruction across different lessons 

and teachers. 

Regardless of who carries out these 

observations and analyzes the resulting 

1 Recently, Lampert (2017) has contrasted ambitious teaching, focused on balancing conceptual understanding with 
procedural fluency and flexibility, with more traditional modes of instruction, focused on procedural repetition.

data — teachers, principals, district staff, 

or partners from a research institution — it 

is challenging and time-consuming work. 

But this work is essential in order to gain 

knowledge of how the standards are being 

implemented in classrooms to support all 

students in achieving mastery of the CCSS-M. 

Without understanding of how teachers and 

students are responding to the standards, 

it is impossible to know what supports and 

course changes are still needed, from either a 

district perspective or a policy perspective.

Additionally, we frequently hear that there 

are not enough real-life examples of what 

the CCSS-M look like in classrooms when 

implemented well. Without examples of 

high-quality, standards-aligned instruction, 

it is difficult for educators to imagine how 

the standards should look and feel in their 

own classrooms, or to gauge their own 

progress. Carefully documented classroom 

observations can be a source of these sorts 

of real-world examples of standards-aligned 

instruction.

The Math in Common (MiC) initiative was 

launched to support CCSS-M implemen-

tation in grades K–8 in 10 California school 

districts. As part of its evaluation of MiC, 

WestEd conducted classroom observations 

in participating MiC districts to document 

K–8 teachers’ instructional shifts related 

to the CCSS-M. The research staff visited 

elementary and middle school classrooms in 

nine MiC school districts, during the 2015–16, 

2016–17, and 2017–18 academic years, to 

observe and analyze mathematics lessons, 

using an observation protocol adapted for 

this project. Participants from MiC teams 
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often joined us during the observations and 

debriefed with us afterwards.

Our preliminary learning from these class-

room observation data was publicly reported 

in a blog post characterizing common 

structural features of highly rated lessons 

(Seago & Perry, 2017) and in case studies of 

incremental change in teacher practice over 

time (Seago & Carroll, 2018). 

This report describes additional analyses 

of observation data on eight dimensions of 

classroom mathematics instruction. These 

analyses are drawn from our complete set 

of classroom observation data: 201 lesson 

observations, representing more than 

130 hours of observation over three years. 

We begin the report by describing our 

classroom observation protocol and the 

dimensions of classroom instruction that 

we observed using this protocol. We then 

present our findings on the instructional 

variability that we saw across classrooms 

and districts. Next, drawing on classroom 

transcripts and observation data, we dis-

cuss what highly rated classrooms looked 

like across the various dimensions that we 

observed, and how administrators and others 

can support this sort of CCSS-M–aligned 

instruction. The report concludes with 

several recommendations for conducting 

effective classroom observations. 

Our primary goal with this report is to share 

with teachers and administrators what we 

have learned about how particular elements 

of CCSS-M–aligned instruction look and feel 

when implemented effectively in the class-

room. We also wish to stimulate discussion in 

the field about what kinds of information can 

best help educators understand standards 

implementation, and to share emerging 

insights from our experience trying to mea-

sure shifts in mathematics instruction. 
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WestEd’s Protocol for Observing 
Classroom Instructional Shifts

The WestEd team wanted our 
classroom observations to 
contribute to the MiC initiative in 
several ways. First, in examining 
teachers’ instructional practices 
related to the CCSS-M, we hoped 
to learn whether there were 
instructional patterns, within and 
across the participating districts, 
that could clarify teachers’ 
progress toward implementing 
standards-aligned instruction. 
Most MiC district teams were 
themselves working on creating, 
piloting, and revising their own 
classroom observation protocols, 
and we hoped that, as they joined 
us on observations and discussed 
findings, we could support their 
efforts to collect their own valid, 
reliable, and useful classroom 
observation data. We also hoped 
that our formative analysis of 
classroom observation data 
could inform districts’ teacher 
professional development, based 
on instructional successes and 
challenges revealed in the data. 

2 MQI was developed by researchers from the National Center for Teacher Effectiveness, the Center for Education 
Policy Research, and Harvard University. It was used as one of the primary observation instruments in the Measures of 
Effective Teaching study (Hill et al., 2008; Kane, McCaffrey, Miller, & Staiger, 2013). Getting certified on the MQI instru-
ment involved many hours of participating in in-person professional learning and rating videos to calibrate our team’s 
interpretations of the MQI codes with master coders.

To gather reliable and practical class-

room observation data, we developed an 

observation protocol to measure several 

important dimensions of CCSS-M–aligned 

instruction. This section describes how we 

chose those dimensions, how we carried out 

the classroom observations, and what we 

learned about the interconnections among 

the dimensions of our observation protocol. 

Classroom observation is labor-intensive 

and complex work, and we hope that school 

district staff and others can learn from our 

experience.

Developing the observation 
protocol
In fall 2014, the evaluation team was certified 

on the Mathematical Quality of Instruction 

(MQI) instrument.2 Although the MQI instru-

ment was developed before the CCSS-M 

were released, MQI researchers found strong 

connections between the eight Standards for 

Mathematical Practice found in the CCSS-M 

and elements of MQI (Hill & Beisiegel, 2014). 

The MQI instrument, designed for use 

on videos of classroom math instruction, 

encompasses 21 dimensions of teaching and 

learning, within four overarching domains. 

The WestEd team chose nine of the 21 MQI 

dimensions to pilot test in live (not video 

recorded) observations during spring 2015. 

We chose these dimensions because they 



44

seemed to be most closely aligned with the 

MiC districts’ CCSS-M instructional goals.3 

After piloting the observation protocol in 

30 classrooms across five districts, the team 

selected five of the originally identified nine 

MQI dimensions to continue to use. (We 

found that four of the dimensions that we 

had originally selected were not producing 

clear or useful information about instruction.) 

In order to capture evidence of both teachers’ 

and students’ actions in the classroom, we 

slightly adapted the wording of three MQI 

dimensions to focus primarily on teacher 

work to support rich mathematics, while we 

used the other two selected dimensions to 

attend to students’ mathematical thinking 

and behavior. 

While we were developing our classroom 

observation protocol, several MiC districts 

were also beginning to use the Teaching 

for Robust Understanding (TRU) framework 

(Schoenfeld, 2014) for their own observa-

tions. After our pilot, we found that some 

important ideas about instruction that did not 

seem to be well captured through the MQI 

dimensions appeared in the TRU framework. 

Accordingly, in order to gather more robust 

evidence and to support our technical 

assistance to districts regarding their own 

observation programs, we incorporated three 

TRU dimensions into our protocol, for a total 

of eight dimensions — five MQI dimensions 

(see Table 1) and three TRU dimensions 

(see Table 2). These eight dimensions were 

ultimately chosen because they reflect three 

important instructional goals of the CCSS-M 

— student participation, mathematical 

practices, and conceptual understanding — 

and because they figured heavily in the work 

of the MiC districts.

3 Acknowledging prior research on the complexities of implementing and observing classroom mathematics lessons 
(e.g., Lampert, 2001; Lewis & Tsuchida, 1999; Perry, Seago, Burr, Broek, & Finkelstein, 2015), we settled on observing 
nine MQI dimensions that fall into two larger categories: “richness of the mathematics” and “Common Core–aligned 
instruction.” We recognized that we as observers would struggle to simultaneously observe more than nine dimensions 
during live classroom lessons.

4 MQI has a four-point scale of ratings: 1 = Not Present, 2 = Low, 3 = Mid, and 4 = High. TRU uses a three-point scale: 
1 = Novice, 2 = Apprentice, and 3 = Expert. TRU subsequently eliminated the word descriptors from their observation 
tool, and also changed the name of one dimension from “agency, authority, and identity” to “agency, ownership, and 
identity.” Appendix A includes more information on these rating levels.

Each dimension was rated on a rubric scale (a 

four-point scale for the MQI dimensions and 

a three-point scale for the TRU dimensions).4 

With this rubric, we hoped to gather useful 

observation data about how teachers were 

aligning their instruction with the CCSS-M, 

which would contribute to both our for-

mative and summative evaluations of the 

MiC initiative.

Conducting observations in 
the field
Working in pairs, evaluation staff used our 

protocol and rubric to observe math lessons 

in grades K–8, and to gather evidence of the 

existence, and strength of implementation, of 

the eight dimensions in each lesson. WestEd 

staff paired up to observe 201 mathematics 

lessons between fall 2015 and spring 2018, 

often joined by members of each district’s 

MiC team. The 201 lessons were conducted 

in 141 different elementary and middle school 

classrooms in nine MiC school districts. 

(Information about the observation sample is 

provided in Appendix B.) A district represen-

tative from the MiC leadership team selected 

the teachers to be observed each year, based 

on their grade level, availability, and interest. 

Each visit to a mathematics lesson lasted for 

approximately one hour (generally the full 

length of the lesson or mathematics period). 

During the observation, the two WestEd 

observers took notes, which were then used 

to determine scores on each of the eight 

dimensions. After determining the scores 

individually, the pair met to come to con-

sensus on final ratings for each dimension. 

For each lesson, they also produced detailed 

observation notes and summaries that 
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WestEd’s Protocol for Observing Classroom Instructional Shifts

Table 1. Mathematical Quality of Instruction Instrument Dimensions Included in the 
MiC Observation Rubric

Observation Category Description

Linking representations Teachers’ and students’ explicit, public (in small or whole groups) 
linking and connections between different representations of a 
mathematical idea or procedure. 

Multiple solutions/procedures Multiple solution methods occur or are discussed for a single 
problem. Multiple procedures for a given problem type occur or 
are discussed.

Mathematical sense-making The teacher publicly attends to one or more of the following: 
the meaning of numbers, understanding relationships between 
numbers, connections between mathematical ideas or between 
ideas and representations, giving meaning to mathematical ideas, 
whether the modeling of and answers to problems make sense.

Student explanations Students provide a mathematical explanation for an idea, proce-
dure, or solution. Examples: Students explain why a procedure 
works; students explain what an answer means.

Student questioning and 
mathematical reasoning 

Students engage in mathematical thinking that has features of 
important mathematical practices. There must be clear evidence 
of students engaging in such practices, such as: students provide 
counterclaims in response to a proposed mathematical state-
ment or idea; students ask mathematically motivated questions 
requesting explanations (e.g., “Why does this rule work?”; 
“What happens if all the numbers are negative?”).

Source: Adapted from Hill (2014). 

Table 2. Teaching for Robust Understanding Framework Dimensions Included in 
the MiC Observation Rubric

Observation Category Description

The mathematics How accurate, coherent, and well justified is the mathematical 
content (including mathematical language)? Is there a clear math-
ematical goal for the lesson? How did mathematical ideas develop 
within the lesson for students?

Access to mathematics To what extent does the teacher support access to the content of 
the lesson for all students? Who did and didn’t participate in the 
mathematical work of the class, and how?

Agency, authority, 
and identity 

To what extent are students the source of ideas and discussion of 
them? How are student contributions framed? What opportunities 
did students have to explain their own and respond to each other’s 
mathematical ideas? How does the teacher respond to student 
ideas?

Source: Adapted from Schoenfeld & Teaching for Robust Understanding Project (2016).
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described the activities and interactions of 

the lesson.

Observations were conducted twice in 

each academic year, in the spring and fall; 

some classrooms were visited repeatedly 

within a year or across years. (See the Math 

in Common evaluation report Incremental 

Shifts in Classroom Practice: Supporting 

Implementation of the Common Core 

Standards—Mathematics [Seago & Carroll, 

2018] for case studies about changes 

observed in classrooms that were visited 

repeatedly across several years.) 
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Instructional Variability Across the 
Observed Classrooms

While our data set of observed 
lessons is relatively small and 
therefore is not representative 
of the full breadth of instruction 
happening in any single school 
or district, we believe that the 
findings in this report can still offer 
some useful snapshots of CCSS-M 
implementation as it played out 
in real classrooms. This data set 
helps us pose and answer some 
questions about instruction in the 
MiC districts: How much variation 
in lesson quality is apparent in our 
cross-district sample? How many 
lessons are being taught at an 
expert level in at least one of our 
measured dimensions?

The data from the 201 lessons that we 

observed illustrate variation in classroom 

instruction across observation periods, across 

the sample, and across districts. This variation 

is the result of differences in many factors, 

including instructional materials, grade levels, 

student assignments, class work structures 

(e.g., in small groups versus individual), 

selected tasks, student populations, and 

teacher experience. Given the relatively 

small sample of teachers, their varying 

interpretations of students’ needs, and the 

many decisions that go into developing and 

implementing any given classroom lesson, 

we were not surprised to find such variability.

Tables 3 and 4 on page 8 show the frequency 

of ratings assigned for each of the eight 

dimensions across the sample of 201 lessons 

observed by WestEd staff. Several findings are 

evident from these data: 

• The majority of lessons exhibited at 

least a moderate amount of stu-

dent mathematical sense-making 

(134  lessons, or about 66 percent of 

the lessons, were rated Mid or higher). 

Of the five MQI dimensions, student 

mathematical sense-making received 

High ratings most frequently. 

• Not Present (i.e., no evidence) was the 

most frequent rating for linking repre-

sentations (68 lessons, or 34 percent) 

and for multiple solutions/procedures 

(75 lessons, or 37 percent).

• More than a quarter of the lessons (57, 

or 28 percent) received a High rating 

on the mathematics. Conversely, 

student agency, authority, and identity 

received the highest rating for only 

about one-sixth of the lesson sample 

(34 lessons, or 17 percent).

• More than half of the lessons were 

rated at the middle Apprentice level on 

each of the three TRU dimensions.

• The majority of lessons (108, 

or 54 percent) did not receive a 

High/Expert rating on any of the 

dimensions.

We also investigated the hypothesis that 

instruction might be more likely to shift 

toward higher ratings (i.e., more High or 

Expert ratings on the rubric) after teachers 

had had more time to learn about the 

standards and hone their practice. That is, 

we considered the possibility that rating 
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patterns would trend upward over the course 

of the observation periods. However, when 

we examined data for the full sample across 

all six observation periods, there were no 

statistically significant differences in lessons 

that were observed earlier in the initiative, 

versus those observed later in the initiative, 

on any of the dimensions. 

These data indicating no improvements 

in ratings over the course of the initiative 

present a paradox. We know, from survey 

results and from district administrator 

reports, that teachers across MiC have made, 

and continue to make, significant efforts to 

shift their instruction to align with the new 

standards, but those efforts are not explicitly 

present in this data set. We think there are at 

least a couple of explanations for this. 

One explanation is that, given our sample 

size, we saw only a very small representation 

of all of the types of mathematics instruc-

tion occurring across the district, or even 

occurring across the year in the classrooms 

that we did observe. Another explanation is 

that teachers do not make deep changes to 

their instruction overnight, but make these 

changes through a long series of powerful 

but incremental shifts. Teachers’ subtle 

instructional shifts would not necessarily 

appear on a rubric that is only scaled with 

three or four points. However, as described 

in the 2018 MiC evaluation report (Seago 

& Carroll, 2018), these incremental shifts 

were observed, and richly described, when 

WestEd researchers visited the same set of 

classrooms for several years and developed 

relationships with the teachers in order to 

better understand the contexts and moti-

vations for the changes they were making. 

We believe that, ultimately, our observation 

protocol was not sensitive enough to detect 

the real instructional changes that teachers 

were making. 

Additional analysis of the 
observation data
We began our study knowing that reducing 

the rich, complex, and interrelated dynamics 

of classroom instruction to eight isolated 

dimension scores would present challenges. 

However, observations conducted with 

a reliable and valid instrument can reveal 

important information about instruction 

Table 3. Distribution of Lesson Ratings on the Five MQI Dimensions (N = 201)

MQI Dimension Not Present Low Mid High

Linking representations 68 45 56 32

Multiple solutions/procedures 75 39 67 20

Mathematical sense-making 23 44 76 58

Student explanations 41 55 61 44

Student questioning and reasoning 51 58 58 34

Table 4. Distribution of Lesson Ratings on the Three TRU Dimensions (N = 201)

TRU Dimension Novice Apprentice Expert

The mathematics 31 113 57

Access to mathematics 20 132 49

Agency, authority, and identity 49 118 34
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Instructional Variability Across the Observed Classrooms

across classrooms, and we were curious to 

understand how the empirical data reflected 

classroom complexity. 

To develop this understanding, we conducted 

two statistical analyses. We found that the 

eight dimensions were highly correlated with 

one another. Some of the dimensions were 

so closely linked statistically that they could 

be considered elements of the same phe-

nomenon — the eight dimensions grouped 

statistically into five underlying components 

of classroom instruction.5 Three pairs of 

dimensions were found to be associated with 

each other in a way that suggests that they 

address a common underlying component 

of classroom instruction. So, for instance, 

our analysis found that the dimensions of 

student explanations and agency, authority, 

and identity don’t actually measure sepa-

rate aspects of classroom instruction; they 

co-occurred so frequently in the scores that 

analysis revealed they actually both measure 

one underlying component of classroom 

instruction — student explanations that 

serve to support student agency. Two of 

5 A principal components factor analysis was used to identify these five components. The results of this analysis are 
provided in Appendix C.

the dimensions, linking representations and 

 multiple solutions, were relatively indepen-

dent of the others (see Table 5). 

Although we did not initially intend for these 

statistical analyses to reduce the number of 

observation dimensions, we were intrigued 

by the results and by the implications for 

using these findings as the basis of a new 

protocol in the future. Reducing the number 

of dimensions could enable us to focus our 

observational efforts on collecting better 

evidence during observations, since it would 

reduce the number of simultaneous obser-

vation components in the complex atmo-

sphere of a classroom. Further, if multiple 

dimensions are connected in classroom 

instructional practice, specific examples of 

such instruction could demonstrate ways to 

simultaneously improve multiple aspects of 

the instruction, and thus, the findings from 

the observations could help teachers and 

administrators get more “bang for their buck” 

by spotlighting multiple facets of instruction 

at the same time. 

Table 5. Observation Dimensions and How They Combined to Measure Common 
Components of Classroom Instruction

Observation Dimension Statistically Identified Underlying 
Components

The mathematics Access to challenging mathematics

Access to mathematics

Student explanations Student explanations that serve to support 
student agency

Agency, authority, and identity

Mathematical sense-making Sense-making and student questioning/
reasoning

Student questioning and reasoning

Multiple solutions/procedures Multiple solutions/procedures

Linking representations Linking representations
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What Did Highly Rated 
Classroom Instruction Look Like?

This section describes the five 
components of classroom instruc-
tion that were derived from our 
statistical analysis (see Table 5) and 
why they are important to CCSS-M 
implementation. It draws from 
observed lessons that rated highly 
on each dimension, describing 
what the lesson looked like when 
implemented skillfully in a real 
classroom, and offering ideas for 
how districts can support each 
dimension. It begins by discussing 
the three pairs of connected 
dimensions, followed by descrip-
tions of lessons that received high 
ratings on the two dimensions that 
our analysis found to be indepen-
dent of other dimensions. 

Connected dimensions

Access to challenging mathematics 

This component of classroom instruction is 

measured by the following two connected 

dimensions in our observation protocol: the 

mathematics and access to mathematics.

How these connected dimensions support 

the CCSS-M 

The mathematics dimension measures how 

well developed, correct, and grade appro-

priate the mathematics in a given lesson are, 

and whether the lesson offers a learning tra-

jectory with a clear mathematics instructional 

goal that is grade appropriate. The access 

to mathematics dimension measures how 

broad and thoughtfully facilitated the access 

to these mathematics is, and which students 

are participating in a meaningful way in the 

intellectual work of the classroom. 

The correlation of these two dimensions tells 

us that the teachers who are most skillful at 

rising to the mathematical content demands 

of the new standards are also likely to be 

thinking carefully about how to facilitate 

broad access to that content across their 

diverse classrooms.

Prior to the CCSS-M, U.S. classroom instruc-

tion typically followed a relatively standard-

ized and procedural instructional model 

(Stigler & Hiebert, 1999; Nesmith, 2008). 

Students would listen to a lecture and then 

practice procedural steps, all typically with a 

focus on obtaining the right answer, rather 

than a focus on the path of reasoning to 

achieve that answer. This model of teaching 

and learning did not enable U.S. students to 

achieve as well in mathematics as students 

in other (especially East Asian) countries 

(although more recent long-term achieve-

ment trends are more promising for U.S. 

students; IEA, 2016a, 2016b). Research has 

further documented a long history of dispar-

ities in learning opportunities and outcomes 

in mathematics education, based on race, 

class, culture, language, and gender (e.g., 

O’Day & Smith, 2016; Reardon et al., 2018). 

In order to eliminate disparities and enable 

achievement gains, classroom instruction 

needs to create the conditions for all students 

to build and demonstrate mathematical 

understanding.
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What Did Highly Rated Classroom Instruction Look Like?

The CCSS-M assume that all students will 

have access to and opportunities to learn 

high-quality mathematics, regardless of 

their demographic characteristics, but the 

mathematics that students have access to — 

and, as a result, what can be observed in any 

classroom — result from decisions made by 

policymakers at the state, district, and school 

levels as well as decisions made by individual 

teachers. These decisions include decisions 

about which instructional materials to adopt 

at the district level; which classrooms stu-

dents are assigned to; the sorts of additional 

instructional resources or support that are 

provided by school mathematics coaches; 

the sorts of knowledge and experience that 

teachers are supported to build; and how 

assignments are developed and imple-

mented, based on the specific needs that 

teachers have identified for their students, in 

any given month or week of instruction. 

What these connected dimensions look like 

in the classroom 

In the 14 lessons that were highly rated 

for both the mathematics and access to 

mathematics, participation structures proved 

important. One of the most common 

features of evidence for this connected 

dimension was the variety of participation 

structures that facilitated broad student 

access to the intellectual work of the class-

room. These structures included free-flowing 

small-group working formats, systematic or 

visibly random methods for calling on stu-

dents in whole-class discussion, and norms 

for working in small groups. 

Considerations for supporting these con-

nected dimensions in other classrooms

• Lessons rated highly on these two

dimensions tended to involve small

The View from the Field

Participation Structures Facilitating Student Access to 
Challenging Mathematics

Following are descriptions of two observed lessons in which teachers effectively 
promoted access to challenging mathematics by using specific participation 
structures with their students. 

Student Peer-Engagement Structures

In a second-grade class, students were studying properties of polygons, including 
sides, angles, and vertices.

The class had many well-implemented structures to enable students to interact 
with one another and to enable the teacher to provide additional mathematical 
support. The variety of participation formats enabled students to access the mathe-
matics in different ways:

• Students worked in pairs as they sorted pattern blocks and identified groups.

• After completing exercises in their workbooks, pairs of students went to the

carpet without pencils and compared their answers, providing one another with

oral feedback and, in some cases, corrections.

• Toward the end of the lesson, the teacher had students post their responses to

a problem in a designated area by the door, and used these responses to select

students to participate in a small-group discussion on the carpet.

continued on p. 12 >>
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Structures for Whole-Class Discussion

In a third-grade class, students were working in small groups with problems that 
required them to distinguish area from perimeter.

The teacher waited until at least one-third to one-half of the class raised their hands 
before calling on a student. If not enough students raised their hands, the teacher 
had them discuss further in their group before asking the question again. A total of 
seven students then went to the front of the room and used a document camera 
to present to the whole class the shapes they had constructed on geoboards. 
They were able to point directly at their models as they shared their computational 
pathways to determine the area or perimeter.

groups of students whose individual 

work was scaffolded through clear 

roles and clear mathematical tasks that 

they accomplished together. Teachers 

and administrators should consider 

spending time early in the school year 

to plan out student roles for group 

tasks and set student norms for partici-

pating and speaking together, in order 

to ensure that teachers’ classrooms 

support both meaningful mathematics 

learning and broad student access to 

that learning.

• Similarly, these lessons had classroom 

norms to promote wide partici-

pation in the mathematical work 

of the lesson. To broaden access 

and ownership for the work of the 

classroom, teachers can use strat-

egies to call on a range of students 

to share their ideas with the class, 

such as having students randomly 

draw “equity sticks” or purposefully 

selecting students with interesting 

ideas or contributions, based on a 

quick formative check of students’ 

individual or group work. 

• In these lessons, it was clear that 

the teacher had established that 

mathematics was a collective project 

of discovery and not just a rote or 

procedurally focused practice. In the 

best cases (but not in all highly rated 

lessons), the teacher had defined a 

clear mathematical goal for the day’s 

lesson, and that goal was clearly situ-

ated within the larger goals of the unit. 

District administrators can emphasize 

the importance of clear goals in 

lesson planning in order to strengthen 

the mathematical coherence of each 

lesson and unit.

Other observations about these lessons and 

standards implementation

• None of the 14 lessons that were highly 

rated for both the mathematics and 

access to mathematics were highly 

rated on the agency, authority, and 

identity dimension. Although teachers 

of these lessons promoted broad 

access to the mathematics, they did not 

explicitly attribute solution approaches 

to students (e.g., saying to the whole 

class, “Let’s talk about Dante’s method 

for solving this problem”). The practice 

of attributing solution methods to the 

students who use or describe them 

can distribute mathematical authority 

to students and foster student agency. 

In these lessons (as across the entire 

sample), the teachers were more fre-

quently directing discussions or serving 

as the arbiter of what was mathemat-

ically correct, rather than positioning 

students as the intellectual leaders of 

the lesson. 

>> continued from p. 11
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Student explanations that serve to 
support student agency 

This component of classroom instruction is 

measured by the following two connected 

dimensions in our observation protocol: 

student explanations and agency, authority, 

and identity.

How these connected dimensions support 

the CCSS-M 

The student explanations dimension 

describes students’ contributions toward 

offering a mathematical explanation for an 

idea, procedure, or solution, beyond their 

just recounting the steps they completed in 

working on a problem. The dimension also 

attends to students’ expressing their thinking 

about why those steps work. The agency, 

authority, and identity dimension addresses 

the extent to which students are the source 

of ideas and of discussion of them. This 

dimension poses questions such as: Is it the 

teacher or the students who are the primary 

drivers of the conversation and the primary 

owner of the intellectual work of the class-

room? How are student contributions framed 

during the lesson?

The CCSS-M state that one way for teachers 

to assess students’ mathematical under-

standing “is to ask the student to justify, in 

a way that is appropriate to the student’s 

mathematical maturity, why a particular 

mathematical statement is true or where a 

mathematical rule comes from” (NGA Center 

& CCSSO, 2010). In the CCSS-M, having 

students justify their answers is considered 

one of the key supports to build students’ 

mathematical proficiency. Furthermore, 

rich student explanations about why an 

approach or procedure works allow teachers 

to gauge student understanding and make 

formative adjustments to instruction in 

the moment, such as covering a topic 

more deeply or moving more quickly, 

depending on how students’ understanding 

is developing. 

What these connected dimensions look like 

in the classroom

The four lessons that were rated at the 

highest possible level for both the student 

explanations and agency, authority, and 

identity dimensions had similar participation 

formats and task types. A common task 

structure (and a common professional devel-

opment topic for MiC districts) was the “Math 

Talk.” Generally, a Math Talk is an instructional 

routine in which students are given “pur-

posefully crafted computation problems” 

to solve mentally (California Department of 

Education, 2013, p. 9). Solutions are shared 

and discussed by the whole class to sup-

port students’ collective reasoning (see the 

sidebar Math Talks in San Francisco Unified 

School District on page 14 for an example). 

This whole-class sharing format can facilitate 

agency, as the teacher is guided to explicitly 

give students credit for their explanations. In 

some cases, students also respond to one 

another and evaluate how others’ approaches 

were similar or different.

The portion of the second-grade lesson 

shown in the text box The View from the 

Field: Students Explaining Multiple Strategies 

During a Math Talk (page 15) comprised just 

nine minutes of instructional time, but it 

demonstrates not only students’ sustained, 

public articulation of their own ideas, but 

also instances where students are reporting 

about, reflecting on, and evaluating the 

thinking processes of their peers. In these 

exchanges, the space given for students to 

elaborate on their explanations, combined 

with teacher moves to increase ownership 

of and attribution for ideas, facilitated the 

development of student agency and sup-

ported students’ understanding of number 

composition and decomposition.

Considerations for supporting these 

 connected  dimensions in other classrooms

• Math Talks were a very common 

feature in lessons that rated highly 

on these connected dimensions. 

However, the strongest instructional 
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features of the Math Talks often ended 

when the Math Talks did, and student 

explanations and agency, authority, 

and identity were not strongly present 

in other parts of observed lessons. 

Teachers and staff who design 

professional development should 

consider building on the success of 

Math Talks by extending rich student 

discourse and ownership of ideas into 

the remainder of the lesson, so that 

deep mathematical work is taking 

up more than just a few minutes of 

instructional time.

• When students are asked to explain 

their work, they frequently respond by 

recounting the procedure they carried 

out. Students providing justifications 

for their thinking, which we observed 

in the four most highly rated lessons, 

is a much more meaningful math-

ematical practice. Teachers should 

support students in emphasizing the 

“whys” of their approaches to solving 

math problems, by helping them think 

through and describe reasons that a 

particular approach worked.

Other observations about these lessons and 

standards implementation

• Among the four lessons that were 

rated at the highest level for both the 

student explanations and agency, 

authority, and identity dimensions, 

three were rated lower in terms of 

access to mathematics, because not 

all students were able to participate. 

While a Math Talk may enable sus-

tained attention to student ideas in a 

whole-class format, not all students 

may have the chance to contribute or 

be engaged. 

• In two of these lessons rated at the 

highest level for both the student 

explanations and agency, authority, 

and identity dimensions, ratings 

were lower in both the mathematics 

(Apprentice) and student questioning 

and reasoning (Low). In these two 

lessons, because the focus of dis-

cussions was on computational 

pathways, explicit attention was not 

given to larger mathematical ideas. 

These lessons also provided limited 

opportunities for students to engage 

in mathematical reasoning and 

questioning, which involve processes 

of conjecture and generalization that 

may require activity structures beyond 

those provided by Math Talks. 

MATH TALKS IN SAN FRANCISCO UNIFIED SCHOOL DISTRICT

1. Teacher presents the problem.

A problem is presented to the whole class or to a small group. 
Computation problems are always presented horizontally, so as to 
discourage fixation on the standard algorithm.

2. Students figure out the answer.

Students are given time (1–4 minutes) to silently and mentally 
 figure out the answer. They signal quietly to the teacher (e.g., with 
a thumb up against their chest) when they have an answer. If they 
have found one way to solve in the time allotted, students are 
encouraged to think of another way.

3. Students share their answers.

A few students volunteer to share their answers, and the teacher 
records them, without judgment, on the board. 

4. Students share their thinking.

With a partner and/or with the larger group, students share how they 
got their answers. The teacher records students’ thinking and attaches 
their names to the solutions. As the students are sharing their think-
ing, the teacher asks questions that help them express themselves, 
understand one another, and clarify their thinking to make sense of 
the problem and its solution(s). Multiple ways of solving problems and 
the connections between them are emphasized. 

Source: San Francisco Unified School District (n.d.).
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Students Explaining Multiple Strategies During a Math Talk

In this example from a second-grade class that we observed, students shared 
multiple strategies that they used for computations, and compared and connected 
their approaches. This portion of the lesson contributed to its high ratings on both 
student explanations and agency, authority, and identity.

The Math Talk problem on the board was: 

59 + 12

Students worked individually for three minutes, using mental arithmetic. The 
teacher then led the following whole-class discussion to have students describe 
their thinking and even explain each other’s work. 

Student 1:  I used breaking each number into its place value.

Teacher:  Explain how you did that.

Student 1:  I decomposed the 59 into 50 and 9 and decomposed the 12 to 
10 and 2. 50 + 10 = 60. 9 + 2 = 11. So I regrouped the 11. And the 
60 becomes a 70. 70 + 1 = 71.

Student 2:  I made a 10. I minused 1 from 12 and put it to the 9. 

Teacher:  Why?

Student 2:  So I could make a 10. 

Teacher:  Did you think of 9 separately from 5? What does 5 mean?

Student 2:  Six tens. I put the other 10 from the 12.

Teacher:  Took the 1 from the 12 and put it there, so what does the 12 become? 

Student 2:  Eleven. Put 6 and 10 together = 7. 

Teacher:  So 6 + 10 is 7. I’ll have a 6 and a 10, but I think you mean six tens. 
[Shows six tens and one ten plus 1.]

Teacher: I got a little confused with this part. When you told me 59 + 1 is 10 
and a 6, I didn’t know where 6 was coming from.

Student 2:  Six coming from 9 and 1. Other ten was coming from the 11. 

Teacher:  What about this 6?

Student 2:  I put together the 5 and the other 10. 

Teacher:  [writes “5 tens plus this one ten equals 6 tens”] 
Any other strategies?

Student 3:  I turned the 5; I decomposed the 59 into 9 and 5.

Teacher:  Nine and 5?

Student 3:  Nine and 50. And decomposed 12 into 10 and 2, and then I taked 
2 and 9 and it equals 11, and then 10 + 50 = 60. 60 + 11 = 71.

Teacher:  Any questions for [Student 3]?
continued on p. 16 >>
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Student 4:  He did the same thing as [Student 1].

Teacher:  What was different between [Student 1] and [Student 3]?

Student 5:  [Student 3] added 2 from 9. 

Teacher: Over here, what did [Student 1] do different?

Student 5:  Broke apart 11 into 10 and 1.

Sense-making and student  
questioning/reasoning 

This component of classroom instruction is 

measured by the following two connected 

dimensions in our observation protocol: 

mathematical sense-making and student 

questioning and reasoning.

How these connected dimensions support 

the CCSS-M 

The mathematical sense-making dimension 

captures teachers’ work toward helping 

students situate the elements of mathe-

matics — the numbers and procedures — in 

rich contexts and in awareness of their own 

production of knowledge. As described in the 

MQI instrument, mathematical sense-making 

involves focusing on concepts such as:

• The meaning of numbers  

• Understanding relationships between 

numbers  

• Relationships between contexts 

and the numbers or operations that 

represent them 

• Connections between mathemat-

ical ideas or between ideas and 

representations  

• Giving meaning to mathematical ideas  

• Whether the modeling of and answers 

to problems make sense

Within the MQI, both teachers and students 

can be centrally engaged in these sense-

making activities. 

The student questioning and reasoning 

dimension measures how students are 

engaging in mathematical thinking con-

nected to mathematical practices, such as 

wondering aloud why a rule works; offering 

theories, counterclaims, or conjectures in 

response to mathematical ideas; or forming 

conclusions based on observed patterns. 

Some researchers have argued that teachers 

can strategically use diverse mathematical 

ideas introduced during class to support stu-

dents’ sense-making and conceptual under-

standing (Smith & Stein, 2011). Woodward and 

colleagues (2012), for example, recommend 

that teachers explain relevant concepts and 

notation in the context of a problem-solving 

activity and prompt students to describe 

how worked examples are solved using 

mathematically valid explanations. Supports 

for student mathematical sense-making can 

arise both from what a teacher allows or 

attends to during a lesson, and from students 

asking their own questions and sharing their 

reasoning publicly. In other words, evidence 

of sense-making and student reasoning 

can be built on the basis of what is publicly 

attended to, examined, compared, and con-

trasted during the course of a mathematics 

lesson.

What these connected dimensions look like 

in the classroom 

Among the five lessons that were rated highly 

for both mathematical sense-making and 

student questioning and reasoning, contex-

tualized story problems featured prominently. 

>> continued from p. 15
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These problems involved topics and concepts 

such as area/perimeter, modeling geometric 

patterns, and data for statistical analysis. In 

some instances of sense-making, observed 

classes focused on understanding the context 

of a story problem and interpreting it to clarify 

the mathematics of the problem. In other 

instances, sense-making was observed when 

students were interpreting the meanings of 

solutions. In addition to contextualized story 

problems, highly rated lessons on these 

connected dimensions also featured small-

group formats, which provided students with 

additional opportunities to examine their 

mathematical thinking (e.g., questioning why 

an answer was not the one expected).

Considerations for supporting these 

 connected  dimensions in other classrooms

• Contextualized story problems can 

be the kind of rich task that provides 

multiple entry points for students 

with different abilities. Teachers can 

use them to assess students’ current 

understandings of an idea, and they 

can provide signals for teachers about 

where to provide additional support 

for building students’ understandings.

Students Negotiating and Reasoning in Public Through a 
Contextualized Story Problem

In this example, students in a sixth-grade class were solving a story problem about 
selecting members for a bowling team. This portion of the lesson contributed to 
high ratings on both sense-making and student questioning/reasoning.

This example shows students applying their knowledge about measures of center 
(mean, median, and mode) and representations of data distributions to decide 
whom to add to the bowling team, based on the scores of three players over seven 
rounds of bowling.

As part of initially making sense of the problem, students were asked to pose 
questions, such as “If there was a round eight, would John score higher?” The 
subsequent whole-class discussion then considered the trends in the performance 
of various players across seven rounds of bowling:

Student 1:  It can probably go higher; each round it got higher, except between 
2 and 3.

Student 2:  Every one except for the last one was in the 100s, so I am thinking it is 
going to go back.

Student 3:  I disagree with [Student 1] and agree with [Student 2]. Based upon 
John’s score, only three were rounds that go up.

Student 4:  I agree more with [Student 1]. Because the odds of John getting a 
higher score are pretty slim. Six out of seven [rounds], he gets into 100s.

The students’ sharing at the end of the lesson reflected and articulated different forms 
of reasoning, including computing measures of center, creating graphical representa-
tions, looking at ranges of scores in intervals, and deciding wins by round. There was 
a public discussion about rounding, and about its meaning when making decisions. 
Students wrote individually, talked in pairs or small groups, or shared/presented to the 
class their ideas about how to rank and decide across players.

The View from the Field
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• Teachers can also use other instruc-

tional strategies that emphasize the 

kinds of sense-making and ques-

tioning processes that we observed 

for these connected dimensions. 

A “three reads” protocol, for instance, 

is designed to “develop students’ 

ability to make sense of problems 

by deconstructing the process of 

reading mathematical situations” 

(Fostering Math Practices, 2018). 

Teachers’ sharing and recording of 

various students’ understandings is a 

critical part of this routine. Similarly, 

 international comparisons have 

illustrated how teachers’ writing 

on black or white boards provides 

documentation of ideas that arise 

during a lesson, and thus may 

support students in summarizing 

their thinking and reflecting on what 

they are learning (Yoshida & Jackson, 

2010; Stigler & Hiebert, 1999). 

• Among the five most highly rated 

lessons, ratings for student explana-

tions were also generally rated High 

(with only one lesson rated at Low). All 

five lessons, however, were rated at 

the Apprentice level for either access 

to mathematics or agency, authority, 

and identity. Some lessons included 

rich small-group discussion but not 

whole-group sharing out. We see 

small-group discussions as a fruitful 

Using Different Methods to Find Volume

In this example, students in a fifth-grade class explored geometric measurement 
and volume. 

The class started with a number-talk task: “Using multiplication and addition, use 
different ways to express 360.” 

With emphasis on different methods established, the teacher launched students 
into the main task of exploring the layers of a series of six rectangular prisms, 
increasing in volume. Students were given the prompt, “Each layer of these rect-
angular prisms is 4 cubes by 2 cubes. How many cubes make up each prism?” 
Students were then asked to find the answer for each prism, and later to describe 
the prisms using symbolic notation (e.g., 1 layer = 4 × 2 × 1 = 8 cubic units; 
2 layers = 4 × 2 × 2 = 16 cubic units). They were then asked to use this information 
to generate a formula for volume. 

The teacher regularly checked students’ understanding, asking them to specify 
what changed from one presented prism to the next. Students responded to these 
questions in different ways: 

Student 1: The second figure has an additional layer.

Student 2: First it has 8 [cubes], so the next is multiplied by 2, then 3, and so on.

Student 3: Add 8 for each layer.

Student 4: I built figure F by adding 8 because it just adds another layer.

At the end of the lesson, the teacher summarized what one student said about how 
to find the formula for volume: “She looked at how many cubes were in one layer and 
multiplied by the number of layers [because] that’s an easier way than counting cubes.”

The View from the Field
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area for districts to build on — profes-

sional development can help teachers 

successfully scaffold rich small-group 

discussions and learn routines for sur-

facing the small groups’ conclusions 

and questions to the rest of the class. 

• Some lessons featured high-quality 

whole-group discussion with only a 

small number of students participating 

in the conversation, which limited 

the access of other students to those 

discussions. Despite the quality of 

the discussion, these lessons were 

not scored highly. Including more 

students in classroom conversations 

offers another important place for 

teachers to build on current success.

Individual dimensions
Lessons demonstrating high ratings for the 

multiple solutions/procedures and linking 

representations dimensions did not also 

necessarily demonstrate strong mathemat-

ical coherence or student agency; these 

individual dimensions were independent of 

the other identified dimensions. Ratings on 

these dimensions may have been heavily 

influenced by particular tasks chosen for 

the lesson. If teachers chose tasks that were 

more “closed” (i.e., having limited entry 

points) or that were scaffolded for students, 

there might have been less opportunity for 

either type of practice, and, thus, observers 

would have likely scored these two dimen-

sions as Not Present. This section describes 

how each of these two dimensions supports 

the CCSS-M and provides evidence from 

highly rated lessons. 

Multiple solutions/procedures

How this dimension supports the CCSS-M

The first CCSS-M Standard for Mathematical 

Practice requires instruction to engage mul-

tiple solutions to a problem. Understanding 

that there are multiple solutions, and 

being able to understand similarities and 

differences between different solutions, 

contributes to a rich view of mathematics 

that goes beyond the mechanical application 

of algorithms. Attending to multiple possible 

paths to solving a problem can contribute 

to students’ mathematical proficiency. For 

instance, mathematically proficient students 

can often find various entry points into a 

problem, and can understand how others 

approach complex problems. The What 

Works Clearinghouse has found moderate 

evidence that exposing students to multiple 

approaches supports students’ mathematical 

problem-solving skills and can lead to gains 

primarily focused in the area of procedural 

fluency (Woodward et al., 2012). 

Our team adapted this MQI dimension 

to focus attention on the ways in which 

teachers acknowledged and used different 

student solutions during a lesson, consis-

tent with current instructional guidelines 

such as the 5 Practices for Orchestrating 

Productive Mathematics Discussions (Smith & 

Stein, 2011). 

Linking representations

How this dimension supports the CCSS-M

There is strong evidence that teaching 

students to use visual representations 

supports their mathematical problem-solving 

skills in grades 4–8 (Woodward et al., 2012). 

Instructional materials and standardized 

assessments often encourage students to 

show their work in multiple modes (e.g., in 

words, numbers, and pictures). The intention 

is for students to build flexibility in their 

problem solving, so that they are able to use 

different types of representations to explain 

and justify their understanding of a problem 

or how they arrived at an answer (Pape & 

Tchoshanov, 2001). But the reality is that 

when instructional materials prompt students 

to draw “pictures,” it is possible for students’ 

representations to display little or no cor-

responding mathematical content (e.g., in a 

perimeter problem about a cat walking along 

a fence, to encourage students to think about 
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Linking Arrays, Mathematical Expressions, and Verbal Descriptions 
of a Math Problem

This third-grade lesson, which scored highly on linking representations, was 
focused on students using the distributive property and arrays to solve multiplica-
tion problems. Prior to the main lesson task, the teacher engaged students in a brief 
number talk: “Looking at an array, how many ways can we count groups of dots?” 
Six students described how they grouped the dots of a 4 × 3 array, and expressed 
their idea using a multiplication expression (e.g., “2 groups of 2 × 3” or “(2 × 3) + 
(2 × 3)”). As students shared, the teacher drew a diagram and recorded the number 
sentence, then  verbally connected the numbers in the sentence to the grouping in 
the drawing.

For the main lesson task, students were given four arrays and asked to cut each array 
into pieces and use the distributive property to determine the mathematical expres-
sion. Many started with 6 × 8 arrays. In her discussion with the class, the teacher 
used student work that showed an array cut into 3 pieces and labeled as follows: 

5 x 6 +2 x 6 +1 x 6

The class discussion focused on how this drawing was linked to the original 6 × 8 
array, the expression (5 × 6) + (2 × 6) + (1 × 6), and the verbal description of the 
array (e.g., 6 groups of 8).

the distance around, students might draw a 

detailed picture of the cat, instead of focusing 

on the fence dimensions that are needed to 

compute perimeter). 

Our team adapted this MQI dimension 

to focus attention on the ways in which 

teachers specifically drew connections 

among representations, to point out the 

common mathematical features of the 

representations and to support students in 

noticing these features and making similar 

connections themselves.



21

Conclusion and 
Recommendations

While classroom observations 
offer great potential for catalyzing 
improvement across district sys-
tems, various obstacles make them 
challenging to conduct and draw 
useful information from. Teachers 
often (correctly) perceive class-
room observations as related to 
accountability rather than collective 
learning, which decreases the 
likelihood that they will open their 
classrooms. In addition, union con-
tracts may place limitations on who 
can be in teachers’ classrooms and 
for how long. There may also be 
insufficient staff with both training 
and authority (e.g., school princi-
pals) to conduct observations, or 
observation time cannot easily be 
spread across the large number of 
individuals who could benefit from 
formatively oriented observation. 

Other concerns involve what is done with the 

information gained from observations and 

how useful that information can really be — 

who should provide feedback on instruction, 

how they should provide that feedback, 

and on which elements of instruction they 

should focus. There are also the challenges 

of developing or finding a reliable and valid 

instrument to measure the instructional ele-

ments of interest, and of using the resulting 

evidence to inform decisions about profes-

sional development and other investments in 

instructional change.

Given these challenges in carrying out 

effective classroom observations, it is 

no wonder that classroom-observation 

evidence on the success of standards 

implementation at the classroom level is not 

readily available. We have data on student 

outcomes, but we still know little about what 

teachers do in the classroom that influences 

those outcomes. 

Our observations provide only a partial, yet 

still enlightening, view of how the standards 

are being implemented in classrooms. For 

example, we observed a fair amount of 

student mathematical sense-making, which is 

a key goal of CCSS-M teaching and learning. 

However, the connected pair of dimensions 

that comprised the access to challenging 

mathematics component were both rated 

highly in only 14 of the observed lessons 

(7 percent of all observed lessons), and the 

two dimensions that comprised the student 

explanations that serve to support student 

agency component were both rated highly in 

only 4 observed lessons (2 percent). Both of 

these connected pairs of dimensions reflect 

top-level goals of the CCSS-M, and the 

relative rarity with which we observed strong 

examples of these dimensions stands out as a 

call for further action.

To this end, we offer several recommenda-

tions to the field, and particularly to district 

practitioners, for conducting observations 

relevant to improving instruction:

• To document school and district 

implementation progress on a larger 

scale, leverage existing relationships. 

Our conclusions are limited by our 

small sample, but district staff may be 

better positioned than our external 
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team was to visit more classrooms 

on a more frequent basis, in order 

to build a stronger body of evidence 

of instructional shifts and standards 

implementation. 

• Build greater classroom openness to 

facilitate broader evidence-gathering 

about instruction. Some districts may 

have a legacy of observations being 

used for performance evaluations in 

a way that eroded trust with teachers. 

Districts should invest in repositioning 

observations as a way for adults to 

work together to support learning and 

improvement in a collegial, rather than 

punitive, sense.

• Specify a purpose for an obser-

vational rubric and narrow the 

rubric down to a manageable set of 

dimensions of classroom instruction 

to observe. Teaching and learning 

is complex; every dimension of a 

teacher’s approach to mathematics, 

or of a district’s mathematics vision, 

cannot be observed and measured 

simultaneously. Narrowing the focus 

of the observation, in order to gen-

erate useful data to guide improve-

ment efforts, is crucial. In addition 

to being more efficient, focusing on 

just a few rich dimensions of teaching 

and learning — in both professional 

development and observations — may 

better reflect the coherence and 

complexity called for by the standards. 

The five components of classroom 

instruction described in this report, 

which were derived from existing 

frameworks, may be one starting point 

for districts to begin to understand 

instructional ideas as they connect in 

practice.

• Build systems to enable district and 

school staff to observe and reflect 

on classroom observation data, and 

to act on those data accordingly. 

Observation data are among the most 

actionable data that schools and 

districts can hope for. For example, 

our data revealed that shifting from 

having teachers explain math prob-

lems to having teachers support 

students in explaining and justifying 

their mathematical thinking may be 

one of the more difficult instructional 

shifts required by the standards. Other 

data can suggest similar target areas 

around which districts can organize 

professional development. 

There is much more to be learned, within 

and across California districts, about how 

teachers are implementing the CCSS-M 

in dynamic classroom environments. 

Collectively, those of us in classrooms, 

district offices, and research institutions who 

are concerned about standards implemen-

tation have our work cut out for us, not only 

in building better systems of observation, 

but in using the data from those systems to 

better support instructional improvement. 

We hope that evidence from our study 

will enable other educators and adminis-

trators to prioritize this type of classroom 

 observation–based evidence gathering in 

order to learn more about and improve 

standards implementation.
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Appendix A. Observation Protocol: 
Details on the Eight Dimensions 
of Classroom Instruction

Table A1 provides additional details and source information on the eight 
dimensions on which WestEd observers gathered data. The first column 
includes the dimension name, the source, and (for MQI) the broad code 
area of the MQI instrument from which the dimension is derived. The 
second column includes information from the source instrument about 
the purpose of the dimension. The third column provides information 
on the features of an observed lesson that would be examined for 
evidence of the highest possible rating.

Table A1. Details and Source Information on the Eight Dimensions of 
Classroom Instruction

Dimension Description or Guiding Questions Characteristics of “High” or 
“Expert” Ratings

Linking representa-
tions [MQI; Richness 
of the Mathematics]

Teachers’ and students’ explicit, public (in 
small or whole groups) linking and connec-
tions between different representations of a 
mathematical idea or procedure. To count, 
these links must occur across different 
representational “families” (e.g., a linear 
graph and a table both capturing a linear 
relationship).

Links and connections related to student 
contributions are present, with extended, 
careful work characterized by one of the 
following features: 

• Explicit detail about how two or more 
representations are related (e.g., pointing 
to specific areas of correspondence) 

• Detail and elaboration about how two 
mathematical representations are related 
to each other

Multiple solutions/
procedures (MQI; 
Richness of the 
Mathematics)

Multiple procedures or solution methods 
occur or are discussed in the segment: 

• Multiple solution methods for a single 
problem (including shortcuts) 

• Multiple procedures for a given problem 
type

Multiple procedures or solution methods 
occur or are discussed in the segment, and 
include at least one of the following special 
features at some length: 

• Explicit extended comparison of multiple 
procedures or solution methods, for 
efficiency, appropriateness, ease of use, 
or other advantages and disadvantages 

• Explicit discussion of features of a 
problem that cues the selection of a 
particular procedure 

• Explicit links/connections between 
multiple procedures or solution methods 
(e.g., how one is like or unlike another)
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Dimension Description or Guiding Questions Characteristics of “High” or 
“Expert” Ratings

Mathematical 
sense-making (MQI; 
Richness of the 
Mathematics)

The teacher publicly attends to one or more 
of the following: 

• The meaning of numbers 

• Understanding relationships between 
numbers 

• The relationships between contexts and 
the numbers or operations that represent 
them 

• Connections between  mathematical ideas 
or between ideas and representations 

• Giving meaning to mathematical ideas 

• Whether the modeling of and answers to 
problems make sense

Teacher focuses on meaning in a sustained 
way during the segment. This need not be 
the entire lesson, but must be substantial. 

Student explanations 
(MQI; Common 
Core–Aligned 
Student Practices)

Students provide a mathematical explana-
tion for an idea, procedure, or solution. For 
example:

• Students explain why a procedure works  

• Students explain the procedure they used 
to solve a particular problem by attending 
to the meaning of the steps involved in 
this procedure, rather than simply listing 
those steps  

• Students explain what an answer means  

• Students explain why a solution method 
is suitable or is better than another 
method  

• Students explain an answer based on 
an estimate or other number-sense 
reasoning

Student explanations characterize much of 
the lesson. 
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Appendix A. Observation Protocol: Details on the Eight Dimensions of Classroom Instruction

Dimension Description or Guiding Questions Characteristics of “High” or 
“Expert” Ratings

Student questioning 
and reasoning (MQI; 
Common Core–
Aligned Student 
Practices)

Students engage in mathematical thinking 
that has features of important mathematical 
practices. Examples include, but are not 
limited to: 

• Students provide counterclaims in 
response to a proposed mathematical 
statement or idea 

• Students ask mathematically motivated 
questions requesting explanations (e.g., 
“Why does this rule work?”)

• Students make conjectures about the 
mathematics discussed in the lesson

• Students form conclusions based on 
patterns that they identify or on other 
forms of evidence

• Students engage in reasoning about a 
hypothetical or general case

• Students use ideas from a different 
mathematical topic to reason about the 
content of the lesson

• Students make a connection between the 
topic of the lesson and another mathe-
matical area

• Students comment on the mathematics 
of one another’s contributions

Student mathematical questioning or 
reasoning characterizes much of the lesson. 

The mathematics 
(TRU)

• How accurate, coherent, and well 
justified is the mathematical content 
(including mathematical language)? 

• Is there a clear mathematical goal for the 
lesson? 

• How did mathematical ideas develop 
within the lesson for students?

Classroom activities support meaningful 
connections among procedures, concepts, 
and contexts (where appropriate) and pro-
vide opportunities for building a coherent 
view of mathematics. 

Access to mathe-
matics (TRU)

• To what extent does the teacher support 
access to the content of the lesson for all 
students? 

• Who did and didn’t participate in the 
mathematical work of the class, and 
how? 

The teacher actively supports and, to some 
degree, achieves broad and meaningful 
mathematical participation OR what appear 
to be established participation structures 
result in such engagement. 

Agency, authority, 
and identity (TRU)

• To what extent are students the source of 
ideas and discussion of them? 

• How are student contributions framed? 

• What opportunities did students have 
to explain their own and respond to one 
another’s mathematical ideas? How does 
the teacher respond to student ideas?

Students explain their ideas and reasoning, 
and the teacher may ascribe ownership 
for students’ ideas in exposition, AND/
OR students respond to and build on one 
another’s ideas.

Sources: Hill (2014) and Schoenfeld, Floden, & Algebra Teaching Study and Mathematics 

Assessment Project (2014).
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Appendix B. Lesson 
Observation Sample

This table illustrates the number of lessons observed during each obser-
vation period in our study, by MiC district number and by grade level.

Table B1. Number of Lessons Observed, 2015–2018

District Fall  
2015

Spring 
2016

Fall  
2016

Spring 
2017

Fall  
2017

Spring 
2018

Total

1 4 6 5 6 0 0 21

Elementary 2 3 1 3 0 0 9

Middle School 2 3 4 3 0 0 12

2 6 6 5 3 0 6 26

Elementary 3 3 3 2 0 4 15

Middle School 3 3 2 1 0 2 11

3 7 7 6 5 5 4 34

Elementary 6 6 4 4 3 2 25

Middle School 1 1 2 1 2 2 9

4 0 5 0 6 0 6 17

Elementary 0 1 0 4 0 4 9

Middle School 0 4 0 2 0 2 8

5 4 6 4 3 3 0 20

Elementary 0 0 2 2 2 0 6

Middle School 4 6 2 1 1 0 14

6 6 6 5 5 5 4 31

Elementary 3 3 3 3 2 2 16

Middle School 3 3 2 2 3 2 15

7 0 0 4 6 0 0 10

Elementary 0 0 2 3 0 0 5

Middle School 0 0 2 3 0 0 5



2929

Appendix B. Lesson Observation Sample

District Fall  
2015

Spring 
2016

Fall  
2016

Spring 
2017

Fall  
2017

Spring 
2018

Total

9 0 5 0 5 3 4 17

Elementary 0 2 0 2 1 2 7

Middle School 0 3 0 3 2 2 10

10 0 6 6 5 4 4 25

Elementary 0 4 6 5 4 4 23

Middle School 0 2 0 0 0 0 2

Total 27 47 35 44 20 28 201
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Appendix C. Statistical Analyses

The following tables illustrate analyses of the data from the 201 lessons 
that we observed, describing overall correlations among dimensions and 
underlying components that resulted in our groupings of connected 
dimensions in the report.

How are the eight dimensions 
of classroom instruction 
correlated with one another?
To address the question of how the eight 

dimensions of classroom instruction are 

correlated with one another, we computed the 

Pearson correlation coefficient. All 28 pairs of 

codes had Pearson correlation coefficients  

that were statistically significant, given the 

sample size of 201. We divided the resulting 

values into three groups, consisting of the pairs 

of codes that were correlated at relatively low 

(ρ <= 0.38, n = 9), medium (0.38 < ρ < 0.53, 

n = 10), and high (ρ >= 0.53, n = 9) levels, 

respectively. These three levels are displayed 

in Table C1 with color codes that indicate the 

strength of the correlation. (Table labels follow 

the same order as in Appendix A.)

The three TRU codes (shown as “Math,” 

“Access,” and “Agency” in Table C1) are cor-

related with one another at a high (ρ ≥ 0.54) 

level. Several factors may contribute to this 

pattern:

• The TRU codes come from the same 

framework. 

• The TRU codes have fewer rating 

levels (only three) than MQI, possibly 

Table C1. How the Eight Dimensions of Classroom Instruction Are Correlated with 
One Another

  Mult Sense StExpl StQandR Math Access Agency

Linking 0.29 0.36 0.23 0.19 0.29 0.29 0.28

Mult 0.37 0.47 0.30 0.39 0.39 0.45

Sense 0.48 0.52 0.57 0.52 0.48

StExpl 0.56 0.54 0.55 0.62

StQandR 0.53 0.47 0.52

Math 0.60 0.55

Access             0.54

High LowMedium
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making it difficult to distinguish 

among lessons that actually differ 

substantively in quality.

• The “Apprentice” and “Expert” levels of 

ratings have a relatively low “floor.” 

Are there underlying 
components of multiple 
dimensions?
Principal components analysis is a data- 

reduction approach that can identify under-

lying components of individual codes or 

survey questions. There is a distinction drawn 

between constructs (which are created a 

priori) and components that are identified by 

the statistical computations. For MQI, one 

such construct is “richness of mathematics,” 

which subsumes both the linking and 

multiple-solutions codes as well as codes for 

sense-making.

A principal components analysis with varimax 

rotation of the data set yielded the loadings 

with five underlying components, as shown 

in Table C2.

One interpretation of these results is that 

linking representations and multiple solu-

tions/procedures remain codes that measure 

something distinct from the other codes. 

The MQI student-oriented codes (student 

explanations and student questioning and 

reasoning) are associated with the TRU 

agency, authority, and identity code. Student 

questioning and reasoning is also associ-

ated with mathematical sense-making. The 

mathematics and access to mathematics 

TRU codes are closely related to each other. 

Table C2. Underlying Components Incorporating Multiple Dimensions

Component 
1

Component 
2

Component 
3

Component 
4

Component 
5

Linking 0.1 0.97 0.11 0.13 0.12

Mult 0.24 0.12 0.93 0.13 0.16

Sense 0.13 0.22 0.21 0.78 0.38

StExpl 0.75 0.06 0.27 0.17 0.32

StQandR 0.67 0.01 -0.01 0.64 0.08

Math 0.3 0.09 0.15 0.42 0.67

Access 0.31 0.12 0.13 0.15 0.84

Agency 0.74 0.17 0.22 0.1 0.37
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